
1

Armstrong State University
Engineering Studies

MATLAB Marina – Recursion Primer

Prerequisites
The Functions Primer assumes knowledge of the MATLAB IDE, MATLAB help, arithmetic
operations, built in functions, scripts, variables, arrays, logic expressions, conditional structures,
iteration, and functions. Material on these topics is covered in the MATLAB Marina Introduction
to MATLAB module, MATLAB Marina Variables module, MATLAB Marina Arrays module,
MATLAB Marina Logic Expressions module, MATLAB Marina Conditional Structures module,
MATLAB Marina Iteration module, and MATLAB Marina functions module.

Learning Objectives
1. Be able to recognize recursive function implementations.
2. Be able to describe how recursive functions use a stack.
3. Be able to describe how recursive functions operate.

Terms
Important terms you will encounter in this module include: recursion, stack

MATLAB keywords and functions
function

Recursion
Recursion allows repetition of a code segment by repeated function calls rather than iteration.
Recursion (and function calls) requires the use of a stack.

Stack
A stack is a last in first out (LIFO) data structure along with push and pop operations. Stacks are
used to store function parameter values, temporary variable values, and the location in
memory to return to after a function call. The push operation puts a new object on the top of
the stack. The pop operation takes the top object off the stack.

Recursion, due to its repetitive function calls, greatly utilizes the stack and if not careful can
result in stack overflow (stack runs out of space to hold things).

Recursive Functions
Recursion involves a function calling a clone of itself. There must be a way for the recursion to
terminate otherwise one has endless recursive calls which leads to a stack overflow and
termination of the program. Each successive recursive call must move closer to the terminating
condition. Recursive solutions to problems can be elegant and intuitive. However, in general
non recursive solutions are more efficient in terms of speed and resource utilization.

2

Recursive functions typically consist of two parts: a base or terminating case and a recursive
case. Recursive functions will usually call themselves to solve a smaller version of the same
problem, eventually the smaller problems are reduced to the base case, and results are
returned back to the calling function eventually reaching the original calling function.

Consider finding the nth Fibonacci number in the Fibonacci series. The Fibonacci series can be
defined as follows: f(0) = 0, f(1) = 1, f(n) = f(n-1)+f(n-2), so the Fibonacci series is

n 0 1 2 3 4 5 n
fibonacci(n) 0 1 1 2 3 5 fib(n-1) + fib(n-2)

Table 1, Finbonacci Sequence

The base case is Fibonacci of zero or one, the other cases are defined recursively (n is computed
from n-1 and n-2). A recursive solution for determining Fibonacci numbers is
Base case: fibonacci(0) = 0, fibonacci(1) = 1
Recursive Case (n >= 2): fibonacci(n) = fibonacci (n-1) + fibonacci (n-2)

Consider a sample call, fibonacci(4), Figure 1 shows the recursive calls generated
Call 1: fibonacci(4) = fibonacci(3) + fibonacci(2)_1
Call 2: fibonacci(3) = fibonacci(2)_2 + fibonacci(1)_1
Call 3: fibonacci(2)_2 = fibonacci(1)_2 + fibonacci(0)_1
Call 4: fibonacci(1)_2 =1, returns value for call 3
Call 5: fibonacci(0)_1 = 0, returns value for call 3
Call 6: fibonacci(2)_1 = fibonacci(1)_3 + fibonacci(0)_2
Call 7: fibonacci(1)_3 = 1, returns value for call 6
Call 8: fibonacci(0)_2 = 0, returns value for call 6

fibonacci(3) fibonacci(2)

fibonacci(1)fibonacci(2) fibonacci(1)

fibonacci(1)

fibonacci(4)

fibonacci(0)

fibonacci(0)

Figure 1, Recursive Calls Generated by fibonacci(4)

3

Once the base cases are reached, the results are returned back up the chain until the original
call fibonacci(4) generates its results. MATLAB functions for recursive and non-recusive
(iterative) solutions to the Fibonacci number problem are shown in Figures 2a and 2b.

Since Fibonacci(n) requires the two Fibonacci numbers before it, one non-recursive solution to
generating Fibonacci numbers involves iteratively generating all the Fibonacci numbers up to
and including n
Start with fibonacci(0) and fibonacci (1)
fibonacci (k) = fibonacci (k-1) + fibonacci (k-2), k = 2 to n

Which is more efficient? Recursive functions do not usually require local variables (can save
memory). Recursive functions, however, generate additional function calls which require
overhead (copies of variables, stack use, transfer of control). So recursive functions are often
more inefficient since it takes time to put values on the stack. The iterative solution, however,
may be difficult to find or may be confusing.

function result = fibonacciRecursive(n)
if (n == 0)
 result = 0;
elseif (n == 1)
 result = 1;
else
 result = fibonacci_rec(n-1) + fibonacci_rec(n-2);
end
end

Figure 2a, Recursive Solution to Fibonacci Problem (omitting comments)

function fib_n = fibonacciIterative(n)
if (n == 0)
 fib_n = 0;
elseif (n == 1)
 fib_n = 1;
else
 fib_n_1 = 1;
 fib_n_2 = 0;
 for k = 2:1:n
 fib_n = fib_n_1 + fib_n_2;
 fib_n_2 = fib_n_1;
 fib_n_1 = fib_n;
 end
end
end

Figure 2b, Non-Recursive Solution to Fibonacci Problem (omitting comments)

4

Recursive Problems
Some examples of recursive problems are:
• Finding the shortest distance between two nodes on a graph
• Determining the folder structure of a computer system
• Tower of Hanoi game
• Reversing text
• Binary searches
• Determining greatest common divisor

Last modified Thursday, October 02, 2014

This work by Thomas Murphy is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

	Prerequisites
	Learning Objectives
	Terms
	MATLAB keywords and functions
	Recursion
	Stack
	Recursive Functions
	Recursive Problems

